
Automated Hacking via Google
● By Daniel Bartlett, 21c3 December 2004

freebox Security and
Development Team

●A small group of people spread over the world
●Enjoying research and development
●Relish a discussion
●Involved in a few open source projects

Outline

● Google – The info search engines provide
● PHP – The language
● The Issues – Bad coding and what it causes
● Inclusion – The possibilties
● Automation – Speed up the whole process
● PHP Worm – The ideas behind the code
● Analysis of the Santa worm

Search Engines

● Any search engine provides well structured
HTML or XML based search results

● Provides a quick method of finding other web
servers

● Allows data collation without communication
with target

● Search for known vulnerablity, search for
errors

The PHP Language

● Easy to learn

● Lots of resources to learn from

● Many Open Source classes/functions to
utilise

● Aids in Rapid Development

Security Issues

● Local File Inclusion – Information Disclosure,
execution of uploaded scripts, execution of scripts
in the incorrect context

● Remote File Inclusion – Execution of foreign
scripts, probably the most dangerous

● SQL Injection - Information Disclosure; any data in
the database that the PHP script has access to,
unless they used the root account; all! And
updating or insertion of new data

● File Upload – Overwriting of content, can be used
in conjunction with Local File Inclusion

Simple Protection Functions
function white_list($indata) {

$white = array('home', 'products', 'contact');
if(in_array($indata, $white)) return $indata;
else return “”;

}

function black_list($indata) {
$black = array('http', 'ftp', 'union', '..', '\');
for_each($black as $value) {

$indata = str_replace($value, “”, $indata);
}
return $indata;

}

Remote file Inclusion

● Browsing the file system
● Viewing, Editing and Uploading of files
● A sudo command line
● Browsing databases(MySQL/ODBC)
● TCP Port scanning
● Sending MIME emails
● Installation of C based Connect Back/Listining shell
● Debugging of the Script and Global variables

We developed an includable file containing the following
functionality:

Automation

Start it simple. Google for known vulnerabilities then test each
result.

Expand by looking for unknown holes, starting with Error Codes
from PHP; like “Failed opening for inclusion”, “Undefined variable”,
etc. Then test each result.

Walking of pages by grabbing the page and looking for links and
testing each one with a “fuzz” set of common variables, or looking
at the variables used in the site and then bruting them.

The most rewarding is manually walking a site trying each variable
you come accross, takes a long time but I get very pleased when a
site becomes a site with a hole.

PHP Worm

● Portable code – Runs on any server

● Short execution time – Maximise number of
executions

● Infection vectors – Many routes for attack

● Target discovery – Search Engines, Subnet
Probing, TCP Port Scanning

● Mutation – Safer transportation

● Peer To Peer – Build a web net, no single point of
failure

Analysis of Santa.a Worm

● Has only one infection vector
● Weakness in requiring Google
● Coded in Perl, limiting target hosts
● Code didn't always transfer sucessfully
● Defaces sites rather than building a network

Web Based Worm

● Is multi language – PHP/Perl/ASP/Bash/etc.
● Knows multiple know vulnerability
● Searches for error messages from all lang's
● Mutates on each infection

